

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) II B.TECH I SEMESTER END REGULAR EXAMINATIONS, JAN - 2023 ELECTRICAL CIRCUIT ANALYSIS-II (EEE BRANCH)

Time: 3 hours

Max. Marks: 70

Answer all the questions from each UNIT (5X14=70M)

Q.No.		Questions	Marks	CO	KL					
		UNIT-I								
1.	a)	Obtain the dual network for the following circuit.	[7M]	1						
		W III								
		8F								
		INV (A) \$35H \$12H								
		j j								
		\$ 1552								
	1)		[7] (]	1						
	b)	For the incidence matrix shown below, draw the graph.	[/M]	1						
		$1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$								
		$\begin{bmatrix} a & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ b & 1 & 0 & 0 & -1 & 1 & 0 & 0 \end{bmatrix}$								
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
		$d \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \end{bmatrix}$								
OR										
2.	a)	What is meant by network matrices and also explain the types of network	[7M]	1						
	1 \	matrices		1						
	b)	Find the value of current through RL using Millman's theorem	[/M]	1						
		$4\Omega \stackrel{>}{\geq} 4\Omega \stackrel{>}{\geq} \stackrel{>}{\leq} 4\Omega$								
		$R_{L} = 10 \Omega$								
		$4V(\frac{1}{4}) 2V(\frac{1}{4})$ $(\frac{1}{4})10V$								
UNIT-II										
3.	a)	Two wattmeters connected to a 3-phase motor indicate the total power input	[6M]	2						
		to be 12kW. The power factor is 0.6. Determine the readings of each								
	b	Three impedances of $100 + j80$ ohms each are connected in star across a balanced 400 V 3-phase 3-wire supply Find the line currents taken by the	[8M]	2						
		load and the voltage across each impedance. Draw a phasor diagram.	[0141]							
OR										
4.	a)	Derive the relationship between phase and line voltages and currents in	[10M]	2						
		delta connected three phase system and also draw the phasor diagram.								

ode	No:	P21EET01			
	b)	Write the advantages of $3-\phi$ circuits over $1-\phi$ circuits.	[4M]	2	
		UNIT-III			
5.	a)	What are the initial conditions? Why are they needed? Explain	[7M]	3	
	b)	Derive the Transient Response of series RLC-circuit with D.C excitation	[7M]	3	
	1	OR		1	
6.	a)	Explain about the transient response of series RL circuit to the AC excitation for zero initial conditions	[7M]	3	
	b)	Derive the expression for the current in a series RC circuit ($R = 10\Omega$, $C = 5\mu F$) excited by a sinusoidal voltage of 230V, 50 Hz if the supply is connected at t = 0. Assume zero initial conditions.	[7M]	3	
		UNIT-IV			
7.	a)	Show that the resonant frequency circuit $f_r^2 = f_1 f_2$ where f_1 and f_2 are the half power frequencies and f_r is the resonant frequency	[7M]	4	
	b)	Explain about Series resonance with phasor diagrams	[7M]	4	
	1	OR		1	
8.	a)	Obtain the expression for resonant frequency, bandwidth and Q-factor for parallel R-L-C circuit.	[7M]	4	
	b)	Explain about Parallel resonance with phasor diagrams.	[7M]	4	
		UNIT-V			
9.	a)	Express h parameters in terms of ABCD parameters	[7M]	5	
	b)	Find the Z- parameters for the following circuit. $3\Omega^{-}$ 2Ω 5Ω c	[7M]	5	
		OR		1	
10.	a)	Express Z parameters in terms of ABCD parameters	[7M]	5	
	b)	Find the ABCD and h - parameters for the following circuit 10Ω 6Ω 5Ω	[7M]	5	
