PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END REGULAR EXAMINATIONS, JAN - 2023
ELECTRICAL CIRCUIT ANALYSIS-II
(EEE BRANCH)
Time: 3 hours
Max. Marks: 70
Answer all the questions from each UNIT (5X14=70M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
1.	a)	Obtain the dual network for the following circuit.	[7M]	1	
	b)	For the incidence matrix shown below, draw the graph. $\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}\left[\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 1 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \end{array}\right]$	[7M]	1	
OR					
2.	a)	What is meant by network matrices and also explain the types of network matrices	[7M]	1	
	b)	Find the value of current through RL using Millman's theorem	[7M]	1	
UNIT-II					
3.	a)	Two wattmeters connected to a 3-phase motor indicate the total power input to be 12 kW . The power factor is 0.6 . Determine the readings of each	[6M]	2	
	b)	Three impedances of $100+\mathrm{j} 80$ ohms each are connected in star across a balanced 400 V , 3-phase, 3-wire supply. Find the line currents taken by the load and the voltage across each impedance. Draw a phasor diagram.	[8M]	2	
OR					
4.	a)	Derive the relationship between phase and line voltages and currents in delta connected three phase system and also draw the phasor diagram.	[10M]	2	

	b)	Write the advantages of 3- ϕ circuits over 1- ϕ circuits.	[4M]	2	
UNIT-III					
5.	a)	What are the initial conditions? Why are they needed? Explain	[7M]	3	
	b)	Derive the Transient Response of series RLC-circuit with D.C excitation	[7M]	3	
OR					
6.	a)	Explain about the transient response of series RL circuit to the AC excitation for zero initial conditions	[7M]	3	
	b)	Derive the expression for the current in a series RC circuit $(\mathrm{R}=10 \Omega, \mathrm{C}=5 \mu \mathrm{~F}$) excited by a sinusoidal voltage of $230 \mathrm{~V}, 50 \mathrm{~Hz}$ if the supply is connected at t $=0$. Assume zero initial conditions.	[7M]	3	
UNIT-IV					
7.	a)	Show that the resonant frequency circuit $f_{r}{ }^{2}=f_{1} f_{2}$ where f_{1} and f_{2} are the half power frequencies and f_{r} is the resonant frequency	[7M]	4	
	b)	Explain about Series resonance with phasor diagrams	[7M]	4	
OR					
8.	a)	Obtain the expression for resonant frequency, bandwidth and Q-factor for parallel R-L-C circuit.	[7M]	4	
	b)	Explain about Parallel resonance with phasor diagrams.	[7M]	4	
UNIT-V					
9.	a)	Express h parameters in terms of ABCD parameters	[7M]	5	
	b)	Find the Z- parameters for the following circuit.	[7M]	5	
OR					
10.	a)	Express Z parameters in terms of ABCD parameters	[7M]	5	
	b)	Find the ABCD and h - parameters for the following circuit	[7M]	5	

